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Abstract: Recently, Artificial Intelligence (AI) is becoming more widespread in the context of
fostering more sustainable behavior. In particular, in the context of (private) smart homes, such
solutions can contribute to more sustainable resource consumption, leveraging the chances of data
analysis for ecological sustainability. This systematic literature review investigates potential
requirements for data-driven AT applications aimed at enhancing environmental sustainability in
smart homes, analyzing 60 selected papers. Key patterns identified include predictive analytics,
privacy and security, context-aware features, real-time monitoring, interoperability, strategies for
efficiency, personalized user engagement, user interface design, and other behavioral aspects. We
highlight advancements in technology that enable more comprehensive applications and identify the
need for integrating distinct features to build consumer trust and acceptance. Consequently, we
provide a comprehensive overview of current smart home technology and outline future research
directions to improve energy efficiency, user comfort, and environmental sustainability.
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1 Introduction

The rapid advancement of smart home technology starts to transform living environments
into intelligent, adaptive, and efficient spaces [CD07]. Using sensors and devices within
the Internet of Things (IoT) and advanced data analytics, smart home assistance aims to
improve energy efficiency, comfort, and overall household resource management [Gul3].
With these evolving capabilities, there is a growing emphasis on developing data-driven
assistance systems that predict, monitor, and respond to users’ dynamic needs [Al18]. i.e.,
assistance based on Artificial Intelligence (AI). The integration of predictive analytics and
Machine Learning (ML) is a primary driver of these innovations [ZYS16]. These
technologies enable smart homes to forecast energy consumption, detect anomalies, and
optimize resource allocation., reducing costs and minimizing environmental impact.
However, the successful implementation of these technologies requires addressing critical
challenges, such as ensuring user privacy and security [CM20]. [Wel0]. managing the
complexity of context-aware features, and maintaining interoperability and scalability
across diverse smart home systems [Pel4]. Furthermore, personalized engagement
strategies that cater to individual preferences and behaviors greatly enhance the user
experience in smart homes [Bal3]. Effective user interface design, combined with real-
time monitoring and feedback mechanisms, can significantly improve user satisfaction
and can encourage sustainable energy practices [WHI11]. [Za24]. Besides, understanding
the behavioral and social aspects of user interaction with smart home technologies is also
essential for improving user acceptance and facilitating long-term usage [MPAI19].
Combining these research strands and foci to enable a comprehensive understanding of
relevant patterns for Al-based smart home assistants can ultimately allow leveraging broad
consumer acceptance. Therefore we ask:

What are the potential requirements for developing Al-based assistance systems for
environmental sustainability in smart homes?

This question guides our investigation into the technological, privacy, and user
engagement strategies essential for advancing the acceptance of smart home systems. We
opted for a systematic literature review (SLR) to consolidate the current state of research
on Al-based assistance systems in this field. By analyzing 60 selected papers, we identify
nine key patterns that inform the development of such systems, elaborate on potential use
cases for further development, and discuss future research paths. In this way, we contribute
to ongoing efforts to enhance energy efficiency, user comfort, and sustainability in smart
homes, ultimately paving the way for smarter, more adaptive living environments by
leveraging the chances of Al-based systems in this field.

2 Theoretical Background

Smart living refers to the integration of advanced technologies into residential
environments to enhance the quality of life, improving efficiency, and leading to higher
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sustainability [CDO07]. It involves creating intelligent, interconnected systems that can
automate, monitor, and optimize various household functions. making daily life more
convenient, efficient, and environmentally friendly [CD07]. Smart homes, central to smart
living, feature interconnected IoT devices that automate and optimize household functions
[Gul3]. These devices collect and exchange data, enabling automation and remote control
of home functions [Pel4]. Recently, smart living starts to increasingly integrate advanced
technologies such as AI and ML into residential environments to enhance quality of life,
efficiency. and sustainability [CDO07].

The term Al describes technologies aimed at creating systems that perform tasks that often
require human intelligence, such as learning, reasoning, and decision-making [HK19]. In
smart homes, Al technologies like ML and Deep Learning (DL) are crucial for improving
various aspects such as energy efficiency and user comfort [Al18]. [ZYS16]. ML involves
training algorithms on large datasets to identify patterns and make predictions, while DL
uses neural networks to model complex patterns, often requiring large amounts of data
[DY14]. Long Short-Term Memory (LSTM) networks, a type of neural networks, are
particularly effective for time-series prediction tasks. such as forecasting energy
consumption based on historical usage data [HS97]. These AI techniques enable smart
homes to analyze sensor data, recognize user behaviors, and make real-time decisions to
ultimately enhance energy efficiency and comfort [Bal4]. Al plays a dual role in energy
consumption, as it can both reduce and increase usage. On the one hand, AI improves
energy efficiency in smart homes through predictive analytics and optimization
techniques, forecasting energy usage patterns based on historical data and past user
behaviors [Gul9]. For example. ML-based algorithms can predict peak usage times and
adjust Heating. Ventilation, and Air Conditioning (HVAC) systems accordingly, reducing
unnecessary consumption [Ka20]. Al-based systems can also identify anomalies in energy
usage, enabling timely maintenance and preventing wastage [WYA19]. On the other hand.
training complex AI models like deep neural networks is energy-intensive, raising
concerns about environmental impact [SGM19]. Advancements in efficient algorithms,
hardware accelerators, and energy-aware computing are mitigating these concerns,
making Al more suitable and sustainable for real-time applications in smart homes [Sc20].
Most existing studies focus on technological advancements or specific applications of Al-
based systems for envrionemntal sustainability, such as [Go19] performing an SLR on
intelligent user interfaces or [MSA23] focusing on user acceptance and adoption of smart
homes. However, a comprehensive review that consolidates those insights lacks. This
paper aims to fill this gap by synthesizing current research and identifying key patterns for
developing data-driven assistance systems in smart homes employing an SLR-approach.

3  Methods

SLRs aim to provide an overview of a current state of research of a distinct topic [Snl19],
particularly enabling conceptualizations in the context of emerging topics [Pal5]. To
ensure a well-defined. transparent, and rigorous process, we technically followed the
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guidelines by Kitchenham [Ki04] and employed a SLR following the proposed steps by
Wolfswinkel et al. for grounded theory literature reviews [WFW13]. First, in the define-
phase (i.e., specifying key concepts. the context, and inclusion and exclusion criteria
[WEW13]). we established the review scope by defining our research question and focus,
centered around Al-based smart home assistants for environmental sustainability.

Second, in the search-step. we developed a systematic search strategy to identify relevant
literature. This includes selecting appropriate databases, choosing relevant keywords and
search terms, and establishing inclusion and exclusion criteria [WFW13]. We used the
IEEE Xplore, AlSeL, and ACM databases for our search, employing the search term
below (* indicates the use of wildcards). Our inclusion criteria ensure peer-reviewed
articles available in English. Further criteria provide the focus on smart home applications,
particularly related to energy efficiency and sustainability, therefore excluding papers
focusing on different fields like Ambient Assisted Living.

("artificial intelligence" OR "AI" OR "machine learning"
OR "ML") AND (("energy" AND (sav* OR efficien*)) OR
"green" OR "sustainability") AND (app* OR platform* OR
ecosystem* OR "statistics" OR "guideline" OR "framework")
AND ("smart home" OR "smart living" OR "smart building")

In the third, the select-step. we screened the identified studies to select those that are most
relevant to the research question. This involves a two-stage screening process: an initial
review of titles and abstracts (i.e., retrieved publications), followed by a full-text review
of potentially relevant studies (i.e.. retained publications), consistently applying the
selection criteria to ensure the reliability of the review process [WFW13]. From AISeL.,
the search initially yielded 1,393 papers. Filtering by relevance of title and abstract, we
retrieved 78 papers and finally retained 17 papers that contained relevant potential
requirements. From IEEE Xplore. we initially extracted 640 papers, retrieved 74, and
retained 24. From ACM, we initially received 485 papers, retrieved 38, and retained 19.
Thus, combined from all sources, we retained 60 relevant papers.

In the fourth phase, the analyze phase. we manually extracted and synthesized data from
the selected studies. This step involves coding the data, identifying patterns and themes,
and synthesizing the findings [WFW13]. A group of three researchers conducted the
coding and evaluated derived results, inductively developing nine reoccurring patterns.

4 Results

The results of this SLR highlight key patterns essential for developing an effective data-
driven assistance system in smart homes, i.e., an Al-based assistance fostering
environmental sustainability in the smart home context. We identified nine patterns by
observing recurring themes in the selected papers, which Table 1 (Appendix) summarizes,
providing an overview of the occurrences of these patterns within the papers. The first
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pattern, “predictive analytics and ML (P1, #29 papers), underscores the importance of
advanced algorithms for optimizing energy consumption and detecting anomalies. The
“privacy and security” (P2, #8 papers) pattern emphasizes the need for robust data
protection mechanisms to ensure user trust. “Context-aware features™ (P3, #18 papers)
focus on systems that adapt to user behaviors and environmental changes to improve
efficiency and comfort. “Real-time monitoring and analysis™ (P4, #31 papers) highlights
the significance of continuous data collection and analysis for informed decision-making.
The “interoperability and scalability” (P53, #5 papers) pattern stresses the importance of
flexible and extensible systems. “Strategies for efficiency™ (P6, #43 papers) discusses
strategies for improving sustainable energy use and integrating renewable sources.
“Personalized user engagement” (P7. #20 papers) explores methods to tailor user
experiences and encourage energy-saving behaviors. “User interface and experience” (P8,
#14 papers) focuses on creating user-friendly interfaces that facilitate engagement and
understanding. Lastly, “other behavioral and social aspects™ (P9, #12 papers) examine
strategies to influence user behavior and build trust.

Developing data-driven assistance systems enhancing energy efficiency often involves
“predictive analytics and ML” (P1). with energy forecasting as a prominent theme.
[KKR10]. [Re20], and [XW20] highlight the importance of leveraging Al-driven context
awareness and IoT data to predict energy consumption, optimize resource allocation, and
guide users in energy-saving behaviors. [Bal7] aim at improving efficiency of air
conditioning by estimating savings that can be achieved through behavioral energy
efficiency initiatives for residential households in a tropical climate. [Bol8] presented a
self-learning system, which is capable to inform about negative influences of different
HVAC control algorithms. [Ar23] and [Ak24] use LSTM models to forecast energy
demand. while [Na21] also forecast supply, considering factors like electricity prices and
climatic conditions, showcasing advanced forecasting techniques for both general and
cold-climate cities. [Ir23] aggregate the results of multiple ML algorithms using fuzzy
operators to provide more reliable forecasts. Another ensemble approach was also used
for anomaly detection, where [Arl7] propose an ensemble learning framework for
identifying abnormal energy consumption due to equipment malfunctions or human
errors, while [Al19] and [Dil8] recommend specific ML algorithms and Bayesian
Networks for real-time anomaly detection based on occupancy patterns. Another
reoccurring theme is behavioral prediction, which is crucial for optimizing energy usage.
[FBK12] integrate ML and Semantic Web techniques to predict usage patterns. while
[Lil5] and [Al16] emphasize activity recognition and personalized recommendations to
reduce energy waste. [RMK17] focus on non-intrusive load monitoring to predict user
behavior and optimize energy utilization. Finally, thermal comfort prediction ensures
occupant comfort while optimizing energy usage. [Ch17] implement classifiers to predict
thermal comfort levels. [ZHW19] and [Ak24] further explore DL and LSTM networks for
enhancing thermal comfort predictions and energy management.

The “privacy and security” (P2) pattern is crucial for ensuring user trust and safe handling
of personal data. [Sal2] introduce the Go Green project. which reduces energy
consumption and increases user comfort by modeling user preferences through personas
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and entities, enhancing privacy by avoiding direct collection of personal data. [GSB22]
propose design requirements and principles for privacy-friendly smart energy services,
emphasizing user control over data, building trust, adhering to privacy by design. and
acting responsibly. Other requirements include reducing data traffic, establishing rigorous
access confrols, minimizing data collection intervals, and ensuring secure data
computation and storage [GSB22]. [MSA23] review factors influencing user acceptance
of smart homes, identifying key constructs such as perceived usefulness, ease of use, trust,
cost, enjoyment, and perceived privacy and security risks. Addressing these risks through
robust measures like encryption and secure data storage can enhance trust and satisfaction,
facilitating user adoption. [Mel8] focus on IoT security, particularly by identifying
compromised IoT devices based on their inherent communication behavior. [Hyl19]
demonstrate “Sterling”, a decentralized data marketplace for secure data sharing and
privacy-preserving analytics and ML of individuals® health data. [Jal9] examine the
tension between utility and privacy in the context of collecting information on power
consumption to increase power efficiency, and [Pa21] address the related tension of
privacy and convenience, proposing a model for informed consent and data protection
behavior in IoT-enabled smart buildings. Notably. “privacy and security” is one of the
least frequently identified patterns, as we found it in only eight of our selected papers.
This, together with the insight that perceived privacy is a relevant factor for user
acceptance [Ca23]. [CM20]. [MSA23], indicates that more research might be needed in
P2.

“Context-aware features” (P3) enhance smart home functionality by adapting to user
behaviors and preferences. [ASM19] and [Zel5] propose adaptive messaging for timely
energy-saving advice, while [KKR10] and [SCC21] highlight dynamic control systems
that adjust device operations based on real-time data. [WNM13]. [Val4]. [Lil5]. and
[Fr17] provide personalized advice, integrating user-centered visualization and gamified
incentives to induce behavioral change. [Kw14] and [PB17] emphasize user interaction
and engagement through eco-feedback and intelligent scheduling. [Al16], [MN19], and
[Ca22] address recognizing complex daily activities and situation awareness using
advanced analytics and sensor integration. [ACF23] propose a framework for context-
aware predictive systems, emphasizing high data quality and strategic sensor selection.

The next pattern. “real-time monitoring and analysis”™ (P4) facilitates smart home
efficiency. For example, [CKP12] and [RMK17] develop systems for detailed energy
monitoring and load scheduling., while [KKR10] and [Al16] focus on occupancy and
activity recognition. [ZHW19] highlight environmental monitoring for optimal thermal
conditions, and [Arl7] and [Dil8] focus on anomaly detection for managing energy
efficiency. [FBK12], [Val4], [Pal9], and [Ra22] emphasize personalized
recommendations based on real-time data analysis, inducing energy-efficient behaviors.
[WNMI13] and [Frl7] integrate user-centered visualization with context-aware
recommendations to engage users and encourage energy-saving practices.

“Interoperability and scalability” (P5) are fundamental for robust smart home systems.
[FBK12] and [Fr17] propose open interfaces and APIs for customization and integration,
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while [SCC21] and [Ak24] emphasize scalable solutions using LSTM networks and cloud
frameworks for accurate energy predictions and efficient system performance. As only
five papers feature this pattern. we identify a need for future research to focus on this area
due to the centrality to address potential lock-in effects for more responsible developments
[CH24] and the practical relevance for implementing smart home systems.

The pattern “strategies for efficiency”™ (P6) focuses on strategies for optimizing energy
consumption and integrating renewable energy sources. [KKR10] and [CKP12] present
systems for analyzing appliance usage and identifying abnormal patterns, while [RMK17]
and [PB17] explore eco-feedback design. [Val4], [ASKI16]. and [Na2l] integrate
renewable energy and ML methods to manage energy demand and supply effectively.
[Kr19] and [MS23] emphasize behavioral interventions and user engagement to induce
energy-efficient behaviors and ensure user acceptance of smart home systems.

“Personalized user engagement” (P7) is crucial for designing engaging smart home
systems. [Ch17] propose comfort modeling for optimized HVAC settings, while [Val4].
[Lil5], and [Ei22] emphasize personalized recommendations. [Fr17] and [Xi21] integrate
gamification and incentives to enhance user engagement, while [Da20] and [FYB22]
introduce real-time energy recommendations. [WNMI13] and [ASMI19] highlight the
importance of personalized energy visualization and context-aware messaging to prompt
energy-saving behaviors. [Kr19] and [BRU22] explore digital nudges and social norms,
showing their influence on pro-environmental behavior.

“User interface and experience” (P8) are essential for smart home adoption. [CKP12] and
[Ei22] highlight intuitive dashboards for energy consumption insights, while [HBC23] and
[MS23] emphasize transparent communication. [FBKI12] and [WNMI13] focus on
multimodal access and personalized energy visualization to drive user engagement. [Rall]
emphasize the ability to use the application anytime and anywhere, adaptability to
different sensors, user-friendly interfaces requiring minimal interaction, low cost. and ease
of mobility without needing constant internet connectivity. [Fr17] and [PB17] integrate
interactive and engaging elements such as gamification and feedback mechanisms to
enhance user experience. [Go19] investigated design trends of intelligent user interfaces
in the context of contemporary software systems (e.g.. based on IoT).

Finally, “other behavioral and social aspects™ (P9) are critical for understanding user
attitudes towards smart homes. [Kr19] and [BRU22] explore digital nudges and social
norms to encourage energy-saving behaviors. [MSA23] identify factors influencing user
acceptance, such as perceived usefulness, ease of use, trust, cost, and enjoyment.
[HBC23]. [Te22]. and [Rol3] examine the impact of communication strategies, humor,
and various design principles on user trust and engagement. [Za22] aimed at understanding
how users envision their desired home assistant and found that they prefer an agent which
is highly agreeable. has higher conscientiousness, and emotional stability. [ASM19] and
[MS23] highlight the importance of context-aware messaging and real-time feedback for
balancing energy efficiency and user comfort. [Sal2] emphasize modeling user
preferences and privacy to improve energy efficiency.
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S Potential Use Cases

Building on the patterns discussed in the previous section, we explicitly developed two
potential use cases for Al-based assistance systems in smart homes based on the collected
information. The proposed assistants address each of the derived key patterns that should
ensure high trust and consumer acceptance, therefore being a valuable instrument to foster
environmental sustainability in private households by leveraging technological chances.
Firstly, consider a family living in a smart home equipped with IoT sensors where an Al-
based assistance system can significantly reduce their energy bills (P6). The system
predicts household electricity consumption using LSTM models (P1), considering factors
like historical usage data, electricity prices, and weather conditions (P3). It then optimizes
resource allocation, such as scheduling high-energy-consuming tasks (like running the
washing machine or dishwasher) during off-peak hours. The family receives personalized
recommendations for saving energy (P7) and can view their real-time data at any time
(P4). The family accesses their data via a user-friendly web interface with energy
consumption visualizations (P8) and gamification elements for motivating further energy-
saving behavior (P9). The system ensures robust performance using open interfaces (P5)
and continuing trust by appropriate data privacy measures (P2). By integrating predictive
analytics and ML, smart homes can achieve significant energy savings. [Na2l]
demonstrated the integration of discrete wavelet transformation and LSTM models for
managing energy demand and supply. considering factors such as electricity prices and
climatic conditions. Similarly, [Ak24] utilized LSTM networks for forecasting energy
consumption across various parameters in cold-climate cities, showcasing the
effectiveness of advanced ML techniques in optimizing energy usage. These predictive
capabilities allow for better planning and efficient use of resources, ultimately reducing
costs and environmental impact.

Another potential use case is a resident in a smart home getting a notification by the system
(P7) in real-time (P4) due to abnormal energy consumption. Using ML models, the system
adapts to the resident’s typical behaviors and preferences but detects an anomaly (P1) due
to equipment malfunctions or human errors, which the system is able to distinguish (P3).
The system acts responsibly and does not collect more data than needed for its tasks (P2)
while ensuring reliable performance with potentially changing devices over long periods
of time (P5). The processed information is then appropriately visualized (P8) and the
system uses digital nudges to induce energy-saving behavior by assessing the potential
cause of malfunction (P9). The resident can subsequently react and adapt the devices’
settings, leading to more energy efficiency (P6). [Arl7] proposed an ensemble learning
framework for reliably identifying abnormal energy consumption cases as described
above. [Di18] recommended specific ML algorithms and Bayesian Networks for real-time
anomaly detection based on observed behavior. These studies highlight the importance of
anomaly detection in achieving optimal energy efficiency, often tailored to individual
occupants’ preferences and adaptive to changing conditions.
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6 Outlook and Implications

This work highlights key patterns relevant for developing data-driven assistance systems
for smart homes and, based on the results, potential future research directions: The
integration of predictive analytics and ML (P1) offers substantial potential for optimizing
energy consumption and improving user comfort. Future research could focus on refining
these models to handle diverse conditions, improving forecasting accuracy, and enhancing
resource management to achieve cost savings and reduce environmental impact.
Integrating these models with renewable energy sources and ensuring they can process
data in real-time from numerous sources will be crucial advancements. Ensuring user
privacy and security (P2) is critical as smart homes become more data-driven. Future
developments could incorporate robust privacy-preserving techniques., giving users
control over their data. Educating users about security practices and transparent
communication about data usage can support building trust [Ca23]. As only eight of our
selected papers focused on privacy and security. we identify the need for further research.
given the relevance in the context of advanced digital technologies overall [Ca23],
[CH24]. Furthermore, context-aware features (P3) that adapt to users’ behaviors and
preferences can significantly enhance the smart home experience. The development could
prioritize non-intrusive, user-centric approaches for adaptive messaging and dynamic
control mechanisms, providing personalized advice based on real-time data to induce
energy-efficient behaviors. Future research could focus on enhancements in cross-device
coordination and further personalization fo improve user engagement and system
effectiveness. Real-time monitoring and analysis (P4) are crucial for maintaining smart
home efficiency and comfort. Future systems could integrate advanced sensor networks
and ML algorithms to provide continuous insights, enabling proactive management and
quick anomaly responses. One area requiring further research could be the development
of improved data visualization tools and monitoring systems that adapt to changing
environments. Developing open interfaces and APIs (P5) is another crucial but
underrepresented pattern., needed for creating interoperable and scalable smart home
systems. As such frameworks will accommodate increasing data volumes and expand
capabilities without compromising performance, whereas only five of our selected papers
have focused on this pattern, we see a need for further research. Sustainability and energy
efficiency (P6) should remain core objectives. Integrating renewable energy sources and
developing sophisticated energy management strategies will reduce reliance on traditional
grids and minimize environmental impact. Research could explore innovative algorithms
and ML models to optimize energy usage and incorporate sustainable practices.
Personalized user engagement (P7) is critical for inducing long-term user commitment to
smart homes. Tailoring experiences to individual needs and preferences. along with
utilizing gamification and incentives, can significantly enhance user motivation and
satisfaction. Future research could employ robust engagement meftrics to refine these
strategies. Another frequently discussed pattern is user interface design (P8). playing a
crucial role in the success of smart home systems. Prioritizing intuitive dashboards,
transparent communication, and multimodal access will ensure ease of use and
accessibility, empowering users to make informed decisions and adopt energy-saving
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behaviors. Research could improve user interfaces by focusing more on different
communication modalities such as voice and gesture controls. Addressing further
behavioral and social aspects (P9) is essential for inducing sustainable energy practices.
Strategies such as digital nudges, social norms, and transparent communication can
effectively influence user behaviors and enhance smart home technology acceptance.
Future studies could continue exploring these dimensions to develop more effective
engagement strategies, such as humor or emotional Al Finally, our results indicate that
most publications already cover several key patterns. However, none of them integrates
all aspects. Hence, we call for future research assuming a more comprehensive perspective
and integrating the set of key patterns to allow for a more nuanced understanding of
potential influences on each other.

Our research makes significant theoretical contributions to the fields of smart home
technologies, sustainability, and data-driven assistance systems. First, it enhances the
comprehensive understanding of patterns supporting the acceptance of Al-based systems
in smart homes. By categorizing and contextualizing various, previously isolated patterns.
we provide an overview of important features and potential future research paths. Second.
our study contributes to leveraging the chances of digital technologies, particularly Al for
fostering more sustainable (user) behavior by supporting their acceptance. We assess
energy management as one application scenario of Al-based systems in smart homes,
contributing to more awareness development and sustainable use by revealing key patterns
for such systems” acceptance. Third, our derived patterns can support the further spread
of Al-based assistants in general, seizing the technological chances for consumers.
Practically, our findings offer valuable insights for the development of smart home
systems that prioritize energy efficiency and engagement. By emphasizing the important
patterns, we provide actionable advice for practitioners aiming to design and implement
effective smart home systems. Besides, the developed use cases can directly translate to
systems in practice. Despite best efforts, this publication is not without limitations. First,
this publication intentionally focuses on private (smart) homes. Still, Al-based assistance
systems can make a valuable contribution to public smart buildings or smart cities,
requiring dedicated future research. Second, we had to focus on several databases for
conducting our SLR since searching a discipline exhaustively is beyond the scope of one
single publication. We aim to encourage widening our search to further databases. Third.
the chosen search procedure requires a fixed keyword set. Therefore, we encourage future
research to assess (developing) sets. contributing to the derived knowledge integration.
besides particularly focusing on terms such as DL and neural networks, which are
commonly used in Al-related titles, to capture a broad set of relevant studies.
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5

[KKR10] 2010 x X X X

[Lul0] 2010 x X

[Rall] 2011 X X

[CKP12] 2012 X X X

[FBK12] 2012 x X X X X

[OGW12] 2012 X

[Sal2] 2012 X X X X

[Rol3] 2013 X

[WNMI3] 2013 X X X X

[Del4] 2014 X X

[Kwi14] 2014 X X X X

[Val4] 2014 X X X X

[YNF14] 2014 X X

[Lil5] 2015 x X X X X

[SR15] 2015 x X

[Zel5] 2015 x X X X X

[AlL6] 2016 x X X

[ASKI6] 2016 x X

[Ar17] 2017 x X X

[Bal7] 2017 x X

[Ch17] 2017 x X X X

[Fri7] 2017 X X X X X

[PB17] 2017 X X X X X

[RMKI17] 2017 x X X X

[Bolg] 2018 x X

[Cr18] 2018 X

[Dil8] 2018 x X X

[Hyl8] 2018 x
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[MS18] 2018 X

[Al19] 2019 x X X

[ASM19] 2019 X X X X X
[Gol19] 2019 X
[Jal9] 2019 X

[Kr19] 2019 X X X
[MN19] 2019 x X X

[Pal9] 2019 X X X X
[ZHW19] 2019 x X X X

[Ac20] 2020 X

[Da20] 2020 X X X
[Re20] 2020 x X X

[XW20] 2020 x X X

[Na21] 2021 x X X

[Pa21] 2021 X

[scc21] 2021 x X X X X X

[Xi21] 2021 X X
[BRU22] 2022 X X
[Ca22] 2022 x X X

[Ei22] 2022 x X X X
[FYB22] 2022 x X X X X X
[GSB22] 2022 X

[Ra22] 2022 x X X X X

[Te22] 2022 X X
[Za22] 2022 X
[ACF23] 2023 x X X X

[Ar23] 2023 x X X

[HBC23] 2023 X X X X
[Ir23] 2023 x X X

[MS23] 2023 X X X X
[MSA23] 2023 X X
[Ak24] 2024 x X X X

Overall 20 8 18 31 5 43 20 14 12

Tab. 1: Key patterns: “predictive analytics and ML” (P1), “privacy and security” (P2), “context-
aware features™ (P3), “real-time monitoring and analysis™ (P4), “interoperability and scalability”
(P5), “strategies for efficiency™ (P6), “personalized user engagement” (P7), “user interface and
experience” (P8), and “other behavioral and social aspects™ (P9).



